
Etienne Bagnoud CoMosix State Tuesday 12 September 2006

CoMosix state

What's done and what would be done in CoMosix.

CoMosix now

CoMosix is built on a coLinux 0.6.1 and uses kernel 2.4.26 with openMosix patch.
CoMosix depends on WinPCap while running but not for the installation process. Indeed
the install is independent of any third-party software.
CoMosix doesn't integrate any root file system, it uses NFS share to mount the root file
system at boot time, so the system is easier to manage and it's completely similar on
every CoMosix node. The CoMosix init script create necessary writeable files and
directory in RAM.

CoMosix kernel
CoMosix uses a vanilla kernel 2.4.26 patched with coLinux and openMosix. Some tests
have been done with migshm patch but is not used in actual CoMosix kernel.
Root file system over NFS and RAM disk support are also compiled into the kernel.

CoMosix distribution
CoMosix uses a GNU/Linux Debian unstable as distribution. It allows to easy install
packages, with Debian tools like apt-get, and to use standard configuration tools provided
by Debian.

CoMosix installer
CoMosix installer is free of any third-party software. It's build with NSIS and include
network card detection, NFS configuration, additional coLinux block disk and memory
usage configuration. All this is done by an ini file provided to the installer. The coLinux
configuration file is automatically generated by the installer and MAC address is
randomly generated and always start with 00:FF, usually used for TAP device.

CoMosix tomorrow

In order to have a useful system built upon CoMosix there are several things that should
be done. The actual state of CoMosix allows to use it as an openMosix cluster without
known limitations, but we need more than a openMosix cluster. We want to use software
like mpiBlast and a complete MPI environment is needed.
So here is a todo list that would give a glimpse of the evolution of CoMosix.

Users creation
In CoMosix it's not possible to create new users as the home directory is not kept. But we
need to create users for use LAM (it can't be run with root).

Complete LAM environment
LAM is an implementation of MPI. In order to use it we need to build and install it on the
root file system. Then it would be nice to make LAM using mosrun to start any MPI
software. Doing so allow us to follow the state of the CoMosix cluster as it lost or gain
others nodes.

GenBank fully accessible
GenBank is a genetic database. It's a kind of reference in genetic science and often used
to blast sequence against it. Each node must have an access to it.

tmpfs

/home/tchetch/comosix_state.odt 1/3 Last modification 06-09-13 12:01

Etienne Bagnoud CoMosix State Tuesday 12 September 2006

Actually we use RAM disk device to have some point in read-write mode in the root file
system. But RAM disk device take an amount of memory and release it when the system
is going down. The temporary file system (tmpfs) is a bit different as it does what RAM
disk device does, but doesn't lock any specified amount of memory. It just grows as more
space is needed. We could improve the memory usage by this way and so more memory
would be available for applications.

Networked kernel
The CoMosix kernel is tied into the installer. It means that we must reinstall completely
CoMosix just to change the kernel. In a better world, the kernel could be changed just by
overwriting a file on a network share. Thus we could change hundred of nodes in just five
or ten seconds.

Single control point
The whole cluster is not actually easy to control. In order to change a configuration file
we change it on the root file system (this is a single control point), but then we need to go
on every node and restart the service or even CoMosix. That's too much pain. A simple
mouse click or a single command should do that for us.

GenBank update
In order to keep GenBank up to date, we need to download it every month, every week or
even every day. But that should be completely automatic, just set a the cron.

SSH with private/public keys
SSH authentication done with private/public keys would be useful for every task on every
node.

Install mpiBlast on the cluster
mpiBlast is very useful and we need it.

 Where are we now ?

Working on CoMosix lead us to success on some points, but some others are still not
working or badly working.

Users creation
Now there's a possibility to create users and keep their home directory in a specified
state. The home directory is copied to the RAM disk device at boot time. So we can set up
SSH private/public keys authentication. The only limitation is that files created from a
node are not kept after CoMosix shut down. All must be set up in a particular directory
before CoMosix boot.

LAM environment
LAM is working. But not as we really want. It doesn't use mosrun to start MPI software
and mpiBlast get segmentation fault every time we run it. It also need a read-write access
to GenBank database but that's not set.

GenBank fully accessible
GenBank is accessible only read-only but for mpiBlast we need a read-write access.

tmpfs
Nothing done here.

Networked kernel
Nothing done here.

/home/tchetch/comosix_state.odt 2/3 Last modification 06-09-13 12:01

Etienne Bagnoud CoMosix State Tuesday 12 September 2006

Single control point
There's a web single control point up and running. But it need more functionalities.

GenBank update
We've got a automatic update, but it's not doing well. We've spend lot of time on it but it
seems to be not enough.

SSH with private/public keys
This works quit well, but the problem comes from RSA fingerprint. They're generated at
boot time and so if we connected once, the next time SSH will complain that the RSA
fingerprint is wrong. So we configure SSH to not check RSA fingerprint but that node the
best solution. Generating SSH RSA fingerprint at boot time is time consuming and
ignoring verification is a security problem.

Install mpiBlast on the cluster
mpiBlast is installed but it doesn't work. Segmentation fault occurs every time. It might
be necessary to compile it on a node and then install it into to root file system.

Fault list

● mpiBlast seg fault.
● GenBank doesn't update well.
● SSH RSA fingerprint are not kept.
● mpiBlast complain about read-only access on GenBank.

Others important things

● When we moved the root file system from a NFS server to another, the root file
system decided to not work any more (because of the /dev directory we suppose).

● Problem with CoMosix kernel compilation. It cannot be compiled for some
obscures reasons. The whole process of patching, configuring and compiling the
kernel must be done once more. We might did something wrong (as patching in a
wrong order ?)

Conclusion

There's still a lot of work to do, but CoMosix becomes more and more useful and one day
it would provide good services to all the IRO staff. Once mpiBlast would be up and
running, I think that the IRO informatics group will go on creating more and more
software for the cluster !

/home/tchetch/comosix_state.odt 3/3 Last modification 06-09-13 12:01

